| 
 Example 1 LMNO is a parallelogram such that m Ð 
              LON = 300 and l (seg.LO) 
              = 12 cm. If seg.MP is the perpendicular distance between seg.LM 
              and seg.ON , find l (seg.MP). Solution :  l (seg.MP) = 6 Since m Ð LON = m Ð 
              MNP = 300  DMNP is a 300 - 600 - 900 
              triangle \	l 
              (seg.MP) =  l (seg.MN) 	l (seg.MN) = l 
              (seg.LO) = 12 cm \	l 
              seg.MP =  ´ 12 cm = 6 cm. Example 2 D PQR is an acute triangle seg.PS is perpendicular to seg.QR 
              and seg.PT bisects QR. Prove that     l (seg.PR)2 
              + l (seg.PQ)2   =   
              l (seg.PT)2 + l 
              (seg.QT)2 Solution : To prove that    l 
              (seg.PR)2 + l (seg.PQ)2 
              = l (seg.PT)2 + l 
              (seg.QT)2 In D PRS, by Pythagoras theorem  l (seg.PR)2 	=	l 
               (seg.PS)2 + l 
              (seg.SR)2         =	l 
                (seg.PS)2 + [ l 
                (seg.ST) + l (seg.TR) ]2         = 	l 
                (seg.PS)2 + l (seg.ST)2+ 
                2 l (seg.ST ) ´ 
                l (seg.TR) + l 
                (seg.TR) 2 		®(1)
 In D PQS, by Pythagoras theorem l (seg.PQ)2 	=	l 
              (seg.PS)2 + l (seg.QS)2         =	l 
                (seg.PS)2 + [ l  
                (seg.QT) + l (seg.ST) ]2         =	l 
                (seg.PS)2 + l (seg.QT)2 
                + 2 l (seg.QT) ´ 
                l (seg.ST) + l 
                (seg.ST)2 			®(2)
 From (1) and (2)  l (seg.PR)2 + l 
              (seg.PQ)2        = l 
                (seg.PS)2 + l (seg.ST)2 
                + 2 l (seg.ST) ´ 
                l(seg.TR) + l 
                (seg.TR)2 + l (seg.PS)2
 + l 
                (seg.QT)2 - 2 l 
                (seg.QT)
 ´ 
                l (seg.ST) + l 
                 (seg.ST)2.
 	Since l (seg.QT)	=	l 
              (seg.TR)  l (seg.PR)2 + l 
              (seg.PQ)2  = 2 l (seg.PS)2 + 
              2 l (seg.ST)2 + l 
              (seg.QT)2 + 2 l (seg.ST) 
              ´l (seg.QT) - 
              2 l (seg.ST) ´ 
               l (seg.QT)
 = 2 l (seg.PS)2 + 
              2 l (seg.ST)2 + 2 
              l (seg.QT)2 = 2 { l (seg.PS)2 
              + l (seg.ST)2 } + 
              2 l (seg.QT)2 = 2 l (seg.PT)2 + 
              2 l (seg.QT)2 **********   |